Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 850
Filtrar
2.
Glia ; 71(8): 1906-1920, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37017183

RESUMO

Microglia participates in the modulation of pain signaling. The activation of microglia is suggested to play an important role in affective disorders that are related to a dysfunction of the mesocorticolimbic system (MCLS) and are commonly associated with chronic pain. Moreover, there is evidence that mu-opioid receptors (MORs), expressed in the MCLS, are involved in neuroinflammatory events, although the way by which they do it remains to be elucidated. In this study, we propose that MOR pharmacological activation within the MCLS activates and triggers the local release of proinflammatory cytokines and this pattern of activation is impacted by the presence of systemic inflammatory pain. To test this hypothesis, we used in vivo microdialysis coupled with flow cytometry to measure cytokines release in the nucleus accumbens and immunofluorescence of IBA1 in areas of the MCLS on a rat model of inflammatory pain. Interestingly, the treatment with DAMGO, a MOR agonist locally in the nucleus accumbens, triggered the release of the IL1α, IL1ß, and IL6 proinflammatory cytokines. Furthermore, MOR pharmacological activation in the ventral tegmental area (VTA) modified the levels of IBA1-positive cells in the VTA, prefrontal cortex, the nucleus accumbens and the amygdala in a dose-dependent way, without impacting mechanical nociception. Additionally, MOR blockade in the VTA prevents DAMGO-induced effects. Finally, we observed that systemic inflammatory pain altered the IBA1 immunostaining derived from MOR activation in the MSCLS. Altogether, our results indicate that the microglia-MOR relationship could be pivotal to unravel some inflammatory pain-induced comorbidities related to MCLS dysfunction.


Assuntos
Dor Crônica , Microglia , Doenças Neuroinflamatórias , Córtex Pré-Frontal , Receptores Opioides mu , Área Tegmentar Ventral , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/fisiopatologia , Microglia/metabolismo , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiopatologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Animais , Ratos , Modelos Animais de Doenças , Dor Crônica/metabolismo , Dor Crônica/fisiopatologia , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Masculino , Feminino , Ratos Sprague-Dawley
3.
Drug Alcohol Depend ; 246: 109852, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37003108

RESUMO

Research suggests that disproportionate exposure to risk factors places American Indian (AI) peoples at higher risk for substance use disorders (SUD). Although SUD is linked to striatal prioritization of drug rewards over other appetitive stimuli, there are gaps in the literature related to the investigation of aversive valuation processing, and inclusion of AI samples. To address these gaps, this study compared striatal anticipatory gain and loss processing between AI-identified with SUD (SUD+; n = 52) and without SUD (SUD-; n = 35) groups from the Tulsa 1000 study who completed a monetary incentive delay (MID) task during functional magnetic resonance imaging. Results indicated that striatal activations in the nucleus accumbens (NAcc), caudate, and putamen were greatest for anticipating gains (ps < 0.001) but showed no group differences. In contrast to gains, the SUD+ exhibited lower NAcc (p = .01, d =0.53) and putamen (p = .04, d =0.40) activation to anticipating large losses than the comparison group. Within SUD+ , lower striatal responses during loss anticipations were associated with slower MID reaction times (NAcc: r = -0.43; putamen: r = -0.35) during loss trials. This is among the first imaging studies to examine underlying neural mechanisms associated with SUD within AIs. Attenuated loss processing provides initial evidence of a potential mechanism wherein blunted prediction of aversive consequences may be a defining feature of SUD that can inform future prevention and intervention targets.


Assuntos
Indígena Americano ou Nativo do Alasca , Antecipação Psicológica , Corpo Estriado , Fatores Econômicos , Transtornos Relacionados ao Uso de Substâncias , Humanos , Indígena Americano ou Nativo do Alasca/psicologia , Antecipação Psicológica/fisiologia , Imageamento por Ressonância Magnética , Motivação/fisiologia , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/fisiopatologia , Recompensa , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Transtornos Relacionados ao Uso de Substâncias/economia , Transtornos Relacionados ao Uso de Substâncias/etnologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , População Urbana , Fatores de Risco , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/fisiopatologia , Renda
4.
Nat Commun ; 13(1): 577, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102141

RESUMO

Emotional stress is considered a severe pathogenetic factor of psychiatric disorders. However, the circuit mechanisms remain largely unclear. Using a three-chamber vicarious social defeat stress (3C-VSDS) model in mice, we here show that chronic emotional stress (CES) induces anxiety-like behavior and transient social interaction changes. Dopaminergic neurons of ventral tegmental area (VTA) are required to control this behavioral deficit. VTA dopaminergic neuron hyperactivity induced by CES is involved in the anxiety-like behavior in the innate anxiogenic environment. Chemogenetic activation of VTA dopaminergic neurons directly triggers anxiety-like behavior, while chemogenetic inhibition of these neurons promotes resilience to the CES-induced anxiety-like behavior. Moreover, VTA dopaminergic neurons receiving nucleus accumbens (NAc) projections are activated in CES mice. Bidirectional modulation of the NAc-VTA circuit mimics or reverses the CES-induced anxiety-like behavior. In conclusion, we propose that a NAc-VTA circuit critically establishes and regulates the CES-induced anxiety-like behavior. This study not only characterizes a preclinical model that is representative of the nuanced aspect of CES, but also provides insight to the circuit-level neuronal processes that underlie empathy-like behavior.


Assuntos
Ansiedade/fisiopatologia , Comportamento Animal/fisiologia , Vias Neurais/fisiopatologia , Núcleo Accumbens/fisiopatologia , Angústia Psicológica , Derrota Social , Área Tegmentar Ventral/fisiopatologia , Animais , Dependovirus/fisiologia , Depressão/fisiopatologia , Depressão/psicologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios GABAérgicos/metabolismo , Integrases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo
5.
PLoS One ; 17(2): e0263527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35143525

RESUMO

Chronic pain is associated with anhedonia and decreased motivation. These behavioral alterations have been linked to alterations in the limbic brain and could explain the increased risk for obesity in pain patients. The mechanism of these behavioral changes and how they set in in relation to the development of chronic pain remain however poorly understood. Here we asked how eating behavior was affected in low-back pain patients before and after they transitioned to chronic pain, compared to patients whose pain subsided. Additionally, we assessed how the hedonic perception of fat-rich food, which is altered in chronic pain patients, related to the properties of the nucleus accumbens in this patients' population. We hypothesized that the accumbens would be directly implicated in the hedonic processing of fat-rich food in pain patients because of its well-established role in hedonic feeding and fat ingestion, and its emerging role in chronic pain. Accordingly, we used behavioral assays and structural brain imaging to test sub-acute back pain patients (SBP) and healthy control subjects at baseline and at approximately one-year follow-up. We also studied a sample of chronic low-back pain patients (CLBP) at one time point only. We found that SBP patients who recovered at follow-up (SBPr) and CLBP patients showed disrupted eating behaviors. In contrast, SBP patients who persisted in having pain at follow-up (SBPp) showed intact eating behavior. From a neurological standpoint, only SBPp and CLBP patients showed a strong and direct relationship between hedonic perception of fat-rich food and nucleus accumbens volume. This suggests that accumbens alterations observed in SBPp patients in previous works might protect them from hedonic eating disruptions during the early course of the illness. We conclude that disrupted eating behavior specifically sets in after pain chronification and is accompanied by structural changes in the nucleus accumbens.


Assuntos
Comportamento Alimentar , Dor Lombar/fisiopatologia , Núcleo Accumbens , Adulto , Apetite , Dor Crônica , Gorduras na Dieta , Feminino , Seguimentos , Preferências Alimentares , Humanos , Dor Lombar/psicologia , Imageamento por Ressonância Magnética , Masculino , Núcleo Accumbens/fisiopatologia , Prazer
6.
J Am Acad Child Adolesc Psychiatry ; 61(2): 136-138, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34216777

RESUMO

Depression and anxiety disorders together account for the majority of mental health disorders in childhood and adolescence, and are often comorbid.1 The frequent co-occurrence of these disorders has motivated clinicians and researchers to consider dimensional taxonomy models that focus on neurobiological substrates that explain transdiagnostic constructs of functioning (eg, reward processing abnormalities). Such an approach would redefine not only depression and anxiety disorders but could also revolutionize clinical care, as such biobehavioral targets, rather than a traditional primary diagnosis, could serve as the basis for treatment planning. In this issue of the Journal, Auerbach et al.2 examined whether and how a key structure involved in reward processing, the nucleus accumbens (NAcc), is altered in adolescents aged 14 to 17 years with depression and/or anxiety (including generalized anxiety, separation anxiety, social anxiety, specific phobia, agoraphobia, and panic) disorders, and whether NAcc morphometry and function would improve prediction of 6-month symptomatology. As part of the Boston Adolescent Neuroimaging of Depression and Anxiety (BANDA) initiative,3 the researchers compared 129 adolescents with primary diagnoses of depression and/or anxiety and 64 psychiatrically healthy controls on gray matter volumes of the NAcc and on functional activation of the NAcc during a monetary incentive delay task using magnetic resonance imaging (MRI) protocols harmonized with the Human Connectome project (http://www.humanconnectomeproject.com/). Compared to healthy adolescents, depressed/anxious adolescents exhibited significantly smaller volumes of the NAcc and blunted NAcc responses to reward receipt. Among the 88 depressed/anxious adolescents and 57 healthy controls who provided symptom data 6 months later, the researchers also found that inclusion of NAcc volumes, but not reward-related responses of the NAcc on the task, significantly improved statistical prediction of subsequent depression symptoms.


Assuntos
Conectoma , Núcleo Accumbens , Adolescente , Ansiedade/terapia , Transtornos de Ansiedade/fisiopatologia , Transtornos de Ansiedade/terapia , Conectoma/métodos , Depressão , Humanos , Imageamento por Ressonância Magnética/métodos , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/fisiopatologia , Recompensa
7.
Artigo em Inglês | MEDLINE | ID: mdl-34517055

RESUMO

The use of deep brain stimulation (DBS) in treatment resistant patients with schizophrenia is of considerable current interest, but where to site the electrodes is challenging. This article reviews rationales for electrode placement in schizophrenia based on evidence for localized brain abnormality in the disorder and the targets that have been proposed and employed to date. The nucleus accumbens and the subgenual anterior cingulate cortex are of interest on the grounds that they are sites of potential pathologically increased brain activity in schizophrenia and so susceptible to the local inhibitory effects of DBS; both sites have been employed in trials of DBS in schizophrenia. Based on other lines of reasoning, the ventral tegmental area, the substantia nigra pars reticulata and the habenula have also been proposed and in some cases employed. The dorsolateral prefrontal cortex has not been suggested, probably reflecting evidence that it is underactive rather than overactive in schizophrenia. The hippocampus is also of theoretical interest but there is no clear functional imaging evidence that it shows overactivity in schizophrenia. On current evidence, the nucleus accumbens may represent the strongest candidate for DBS electrode placement in schizophrenia, with the substantia nigra pars reticulata also showing promise in a single case report; the ventral tegmental area is also of potential interest, though it remains untried.


Assuntos
Estimulação Encefálica Profunda , Giro do Cíngulo/fisiopatologia , Núcleo Accumbens/fisiopatologia , Esquizofrenia Resistente ao Tratamento , Substância Negra/fisiopatologia , Encéfalo/fisiopatologia , Humanos , Esquizofrenia Resistente ao Tratamento/fisiopatologia , Esquizofrenia Resistente ao Tratamento/terapia
8.
Artigo em Inglês | MEDLINE | ID: mdl-34509531

RESUMO

Opioid withdrawal can be associated to environmental cues through classical conditioning. Exposure to these cues can precipitate a state of conditioned withdrawal in abstinent subjects, and there are suggestions that conditioned withdrawal can perpetuate the addiction cycle in part by promoting the storage of memories. This review discusses evidence supporting the hypothesis that conditioned withdrawal facilitates memory consolidation by activating a neurocircuitry that involves the extended amygdala. Specifically, the central amygdala, the bed nucleus of the stria terminalis, and the nucleus accumbens shell interact functionally during withdrawal, mediate expression of conditioned responses, and are implicated in memory consolidation. From this perspective, the extended amygdala could be a neural pathway by which drug-seeking behaviour performed during a state of conditioned withdrawal is more likely to become habitual and persistent.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Condicionamento Clássico/efeitos dos fármacos , Sinais (Psicologia) , Consolidação da Memória/fisiologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Animais , Comportamento Aditivo/fisiopatologia , Comportamento de Procura de Droga , Humanos , Vias Neurais , Núcleo Accumbens/fisiopatologia , Transtornos Relacionados ao Uso de Opioides/fisiopatologia , Ratos
9.
Cell Transplant ; 30: 9636897211052300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34743572

RESUMO

Amphetamine-type stimulants have become important and popular abused drugs worldwide. Methamphetamine (Meth) sensitization, characterized by a progressive increase in behavioral responses after repeated administration, has been reported in rodents and patients. This behavioral effect has been used as a laboratory model to study drug addiction and schizophrenia. The mesolimbic dopaminergic pathway plays a significant role in the development of Meth behavioral sensitization. Previous studies have reported that the ablation of nucleus accumbens (NAc) by electrolytic or thermal lesioning attenuates addictive behavior to opioids in animals. However, these studies were only conducted in opioid addictive rodents. Furthermore, these ablation procedures also damaged the non-dopaminergic neurons and fibers passing through the NAc. The purpose of this study was to examine the therapeutic effect of NAc lesioning by a selective dopaminergic toxin in Meth-sensitized animals. Adult mice received repeated administration of Meth for 7 days. Open-field locomotor activity and stereotype behavior were significantly increased after Meth treatment, suggesting behavior sensitization. A partial lesion of dopaminergic terminals was made through stereotaxic administration of dopaminergic toxin 6-hydroxydopamine (6-OHDA) to the NAc in the Meth -sensitized mice. Meth behavioral sensitization was significantly antagonized after the lesioning. Brain tissue was collected for qRT-PCR analysis. Repeated administration of Meth increased the expression of tyrosine hydroxylase (TH), BDNF, and Shati, a marker for Meth sensitization, in the NAc. Treatment with 6-OHDA significantly antagonized the upregulation of TH and Shati. Taken together, these data suggest that local administration of 6-OHDA mitigated Meth sensitization in chronic Meth-treated animals. Our data support a new surgical treatment strategy for Meth abuse.


Assuntos
Estimulantes do Sistema Nervoso Central/administração & dosagem , Dopamina/metabolismo , Metanfetamina/administração & dosagem , Núcleo Accumbens/fisiopatologia , Oxidopamina/uso terapêutico , Animais , Humanos , Masculino , Camundongos , Oxidopamina/farmacologia
10.
Cell Rep ; 37(5): 109913, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731618

RESUMO

Opiates produce a strong rewarding effect, but abstinence from opiate use emerges with severe negative emotions. Depression is one of the most frequent emotion disorders associated with opiate abstinence, which is thought to be a main cause for relapse. However, neurobiological bases of such an aversive emotion processing are poorly understood. Here, we find that morphine abstinence activates κ-opioid receptors (KORs) by increasing endogenous KOR ligand dynorphin expression in the amygdala, which in turn facilitates glutamate transporter 1 (GLT1) expression by activation of p38 mitogen-activated protein kinase (MAPK). Upregulation of GLT1 expression contributes to opiate-abstinence-elicited depressive-like behaviors through modulating amygdalar glutamatergic inputs to the nucleus accumbens (NAc). Intra-amygdala injection of GLT1 inhibitor DHK or knockdown of GLT1 expression in the amygdala significantly suppresses morphine-abstinence-induced depressive-like behaviors. Pharmacological and pharmacogenetic activation of amygdala-NAc projections prevents morphine-abstinence-induced behaviors. Overall, our study provides key molecular and circuit insights into the mechanisms of depression associated with opiate abstinence.


Assuntos
Tonsila do Cerebelo/metabolismo , Comportamento Animal , Depressão/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Ácido Glutâmico/metabolismo , Morfina , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Tonsila do Cerebelo/fisiopatologia , Animais , Depressão/induzido quimicamente , Depressão/fisiopatologia , Depressão/psicologia , Modelos Animais de Doenças , Dinorfinas/metabolismo , Potenciais Pós-Sinápticos Excitadores , Transportador de Glucose Tipo 1/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Núcleo Accumbens/fisiopatologia , Receptores Opioides kappa/genética , Transdução de Sinais , Síndrome de Abstinência a Substâncias/fisiopatologia , Síndrome de Abstinência a Substâncias/psicologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
J Psychiatry Neurosci ; 46(5): E559-E567, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34625488

RESUMO

BACKGROUND: Adolescents with bipolar disorder have high rates of cannabis use, and cannabis use is associated with increased symptom severity and treatment resistance in bipolar disorder. Studies have identified anomalous resting-state functional connectivity among reward networks in bipolar disorder and cannabis use independently, but have yet to examine their convergence. METHODS: Participants included 134 adolescents, aged 13 to 20 years: 40 with bipolar disorder and lifetime cannabis use, 31 with bipolar disorder and no history of cannabis use, and 63 healthy controls without lifetime cannabis use. We used a seed-to-voxel analysis to assess the restingstate functional connectivity of the amygdala, the nucleus accumbens and the orbitofrontal cortex, regions implicated in bipolar disorder and cannabis use. We used a generalized linear model to explore bivariate correlations for each seed, controlling for age and sex. RESULTS: We found 3 significant clusters. Resting-state functional connectivity between the left nucleus accumbens seed and the left superior parietal lobe was negative in adolescents with bipolar disorder and no history of cannabis use, and positive in healthy controls. Resting-state functional connectivity between the right orbitofrontal cortex seed and the right lateral occipital cortex was positive in adolescents with bipolar disorder and lifetime cannabis use, and negative in healthy controls and adolescents with bipolar disorder and no history of cannabis use. Resting-state functional connectivity between the right orbitofrontal cortex seed and right occipital pole was positive in adolescents with bipolar disorder and lifetime cannabis use, and negative in adolescents with bipolar disorder and no history of cannabis use. LIMITATIONS: The study did not include a cannabis-using control group. CONCLUSION: This study provides preliminary evidence of cannabis-related differences in functional reward circuits in adolescents with bipolar disorder. Further studies are necessary to evaluate whether the present findings reflect consequences of or predisposition to cannabis use.


Assuntos
Transtorno Bipolar/fisiopatologia , Cannabis , Uso da Maconha , Vias Neurais , Descanso , Recompensa , Adolescente , Tonsila do Cerebelo/fisiopatologia , Feminino , Humanos , Masculino , Vias Neurais/fisiopatologia , Núcleo Accumbens/fisiopatologia , Córtex Pré-Frontal/fisiopatologia
12.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445124

RESUMO

The nucleus accumbens core (NAcc) is an important component of brain reward circuitry, but studies have revealed its involvement in pain circuitry also. However, its effect on trigeminal neuralgia (TN) and the mechanism underlying it are yet to be fully understood. Therefore, this study aimed to examine the outcomes of optogenetic stimulation of NAcc GABAergic neurons in an animal model of TN. Animals were allocated into TN, sham, and control groups. TN was generated by infraorbital nerve constriction and the optogenetic virus was injected into the NAcc. In vivo extracellular recordings were acquired from the ventral posteromedial nucleus of the thalamus. Alterations of behavioral responses during stimulation "ON" and "OFF" conditions were evaluated. In vivo microdialysis was performed in the NAcc of TN and sham animals. During optogenetic stimulation, electrophysiological recordings revealed a reduction of both tonic and burst firing activity in TN animals, and significantly improved behavioral responses were observed as well. Microdialysis coupled with liquid chromatography/tandem mass spectrometry analysis revealed significant alterations in extracellular concentration levels of GABA, glutamate, acetylcholine, dopamine, and citrulline in NAcc upon optic stimulation. In fine, our results suggested that NAcc stimulation could modulate the transmission of trigeminal pain signals in the TN animal model.


Assuntos
Neurônios GABAérgicos/fisiologia , Doenças do Sistema Nervoso/fisiopatologia , Núcleo Accumbens/fisiopatologia , Neuralgia do Trigêmeo/fisiopatologia , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Feminino , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Maxila/inervação , Doenças do Sistema Nervoso/metabolismo , Núcleo Accumbens/metabolismo , Optogenética/métodos , Ratos , Ratos Sprague-Dawley , Recompensa , Tálamo/metabolismo , Neuralgia do Trigêmeo/metabolismo
13.
Sci Rep ; 11(1): 17079, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429478

RESUMO

Primary nocturnal enuresis (PNE) affects children's physical and mental health with a high rate. However, its neural mechanism is still unclear. Studies have found that the paraventricular thalamus (PVT) is among the key brain regions implicated with awakening regulation and its control of the transition between sleep and wakening is dependent on signaling through the PVT-nucleus accumbens (NAc) pathway. So this study analyzed the function of brain regions and their connectivity of PVT and NAc. A total of twenty-six PNE and typically developing (TD) children were involved in the study and the methods of amplitude of low frequency fluctuation (ALFF), degree centrality (DC) and functional connectivity (FC) based on resting-state functional magnetic resonance imaging (rs-fMRI) were used to analyze the brain functions. Results showed that there was no statistical significant difference in ALFF and DC between PNE and TD children in bilateral PVT and NAc. And there was statistical significant difference of the comparison of the FC of left PVT (lPVT) and left NAc (lNAc) between PNE and TD children. Meanwhile, there was negative correlation between awakening score and the FC of rPVT and lNAc, and no obvious correlation between awakening score and the FC of lPVT and lNAc in PNE children. Meanwhile, there was both negative correlation between awakening score and the FC of lPVT, rPTV and lNAc in TD children. Therefore, the FC between rPVT and lNAc was more reliable in assessing the degree of awakening ability in PNE children. This finding could help establish the evaluation index of PNE.


Assuntos
Conectoma , Enurese Noturna/diagnóstico por imagem , Núcleo Accumbens/fisiopatologia , Transtornos do Sono-Vigília/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/fisiopatologia , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Enurese Noturna/fisiopatologia , Núcleo Accumbens/diagnóstico por imagem , Transtornos do Sono-Vigília/fisiopatologia
14.
World Neurosurg ; 155: e168-e176, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34403796

RESUMO

BACKGROUND: Deep brain stimulation of the nucleus accumbens, ventral striatum, or internal capsule region has shown a 45%-60% response rate in adults with severe treatment-refractory obsessive-compulsive disorder, regardless of which target is used. We sought to improve the effectiveness of deep brain stimulation by placing the electrode along a trajectory including these 3 targets, enabling a change of stimulation site depending on the patient's response. METHODS: This study used the medical records of 14 patients from 4 different Spanish institutions: 7 from the Hospital Universitario La Princesa, 3 from the Hospital Universitario Central de Asturias, 2 from Hospital Universitario Fundación Jiménez Díaz, and 2 from Hospital Universitari Son Espases. All patients were operated on under the same protocol. Qualitative and quantitative data were collected. RESULTS: Of 14 patients, 11 showed significant improvement in obsessive-compulsive disorder symptoms, as evident in a reduction ≥35% in Yale-Brown Obsessive Compulsive Scale scores following stimulation relative to preoperative scores. Seven patients responded to stimulation at the nucleus accumbens (the first area we set for stimulation), whereas 4 patients needed to have the active contact switched to the internal capsule to benefit from stimulation. CONCLUSIONS: Deep brain stimulation of the nucleus accumbens, internal capsule, and ventral striatum significantly benefited our cohort of patients with medication-resistant obsessive-compulsive disorder. Electrode insertion through the 3 main targets might confer additional therapeutic efficacy.


Assuntos
Estimulação Encefálica Profunda , Cápsula Interna/fisiopatologia , Núcleo Accumbens/fisiopatologia , Transtorno Obsessivo-Compulsivo/terapia , Estriado Ventral/fisiopatologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtorno Obsessivo-Compulsivo/fisiopatologia , Resultado do Tratamento , Adulto Jovem
15.
Sci Rep ; 11(1): 15322, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321562

RESUMO

DNA methylation and gene expression can be altered by early life stress (ELS) and/or ethanol consumption. The present study aimed to investigate whether DNA methylation of the Vesicular Glutamate Transporters (Vglut)1-3 is related to previously observed Vglut1-3 transcriptional differences in the ventral tegmental area (VTA), nucleus accumbens (Acb), dorsal striatum (dStr) and medial prefrontal cortex (mPFC) of adult rats exposed to ELS, modelled by maternal separation, and voluntary ethanol consumption. Targeted next-generation bisulfite sequencing was performed to identify the methylation levels on 61 5'-cytosine-phosphate-guanosine-3' sites (CpGs) in potential regulatory regions of Vglut1, 53 for Vglut2, and 51 for Vglut3. In the VTA, ELS in ethanol-drinking rats was associated with Vglut1-2 CpG-specific hypomethylation, whereas bidirectional Vglut2 methylation differences at single CpGs were associated with ELS alone. Exposure to both ELS and ethanol, in the Acb, was associated with lower promoter and higher intronic Vglut3 methylation; and in the dStr, with higher and lower methylation in 26% and 43% of the analyzed Vglut1 CpGs, respectively. In the mPFC, lower Vglut2 methylation was observed upon exposure to ELS or ethanol. The present findings suggest Vglut1-3 CpG-specific methylation signatures of ELS and ethanol drinking, underlying previously reported Vglut1-3 transcriptional differences in the mesocorticolimbic brain.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Ansiedade de Separação/genética , Epigênese Genética , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/genética , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/fisiopatologia , Animais , Ansiedade de Separação/metabolismo , Ansiedade de Separação/fisiopatologia , Mapeamento Encefálico , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Ilhas de CpG , Metilação de DNA/efeitos dos fármacos , Etanol/farmacologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiopatologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Ratos , Ratos Wistar , Transdução de Sinais , Estresse Fisiológico/genética , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Área Tegmentar Ventral/fisiopatologia , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
16.
Pharmacol Res ; 170: 105722, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116208

RESUMO

A progressive increase in drug craving following drug exposure is an important trigger of relapse. CircularRNAs (CircRNAs), key regulators of gene expression, play an important role in neurological diseases. However, the role of circRNAs in drug craving is unclear. In the present study, we trained mice to morphine conditioned place preference (CPP) and collected the nucleus accumbens (NAc) sections on abstinence day 1 (AD1) and day 14 (AD14) for RNA-sequencing. CircTmeff-1, which was highly expressed in the NAc core, was associated with incubation of context-induced morphine craving. The gain- and loss- of function showed that circTmeff-1 was a positive regulator of incubation. Simultaneously, the expression of miR-541-5p and miR-6934-3p were down-regulated in the NAc core during the incubation period. The dual luciferase reporter, RNA pulldown, and fluorescence insitu hybridization assays confirmed that miR-541-5p and miR-6934-3p bind to circTmeff-1 selectively. Furthermore, bioinformatics and western blot analysis suggested that vesicle-associated membrane protein 1 (VAMP1) and neurofascin (NFASC), both overlapping targets of miR-541-5p and miR-6934-3p, were highly expressed during incubation. Lastly, AAV-induced down-regulation of circTmeff-1 decreased VAMP1 and NFASC expression and incubation of morphine craving. These findings suggested that circTmeff-1, a novel circRNA, promotes incubation of context-induced morphine craving by sponging miR-541/miR-6934 in the NAc core. Thus, circTmeff-1 represents a potential therapeutic target for context-induced opioid craving, following prolonged abstinence.


Assuntos
Comportamento Animal , Fissura , Comportamento de Procura de Droga , Dependência de Morfina/metabolismo , Núcleo Accumbens/metabolismo , RNA Circular/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Sinais (Psicologia) , Modelos Animais de Doenças , Regulação da Expressão Gênica , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Dependência de Morfina/genética , Dependência de Morfina/fisiopatologia , Dependência de Morfina/psicologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Núcleo Accumbens/fisiopatologia , RNA Circular/genética , Proteína 1 Associada à Membrana da Vesícula/genética , Proteína 1 Associada à Membrana da Vesícula/metabolismo
17.
Neural Plast ; 2021: 9966378, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34158811

RESUMO

Background: Patients with obsessive-compulsive disorder (OCD) experience deficiencies in reward processing. The investigation of the reward circuit and its essential connectivity may further clarify the pathogenesis of OCD. Methods: The current research was designed to analyze the nucleus accumbens (NAc) functional connectivity at rest in medicine-free patients with OCD. Forty medication-free patients and 38 gender-, education-, and age-matched healthy controls (HCs) were recruited for resting-state functional magnetic resonance imaging. Seed-based functional connectivity (FC) was used to analyze the data. LIBSVM (library for support vector machines) was designed to identify whether altered FC could be applied to differentiate OCD. Results: Patients with OCD showed remarkably decreased FC values between the left NAc and the bilateral orbitofrontal cortex (OFC) and bilateral medial prefrontal cortex (MPFC) and between the right NAc and the left OFC at rest in the reward circuit. Moreover, decreased left NAc-bilateral MPFC connectivity can be deemed as a potential biomarker to differentiate OCD from HCs with a sensitivity of 80.00% and a specificity of 76.32%. Conclusion: The current results emphasize the importance of the reward circuit in the pathogenesis of OCD.


Assuntos
Conectoma , Núcleo Accumbens/fisiopatologia , Transtorno Obsessivo-Compulsivo/fisiopatologia , Recompensa , Adulto , Estudos de Casos e Controles , Feminino , Giro do Cíngulo/fisiopatologia , Humanos , Masculino , Rede Nervosa/fisiopatologia , Neuroimagem , Córtex Pré-Frontal/fisiopatologia , Testes Psicológicos , Descanso , Adulto Jovem
18.
Sci Rep ; 11(1): 9442, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33941812

RESUMO

Obsessive compulsive disorder (OCD) is associated with disruption of sensorimotor gating, which may contribute to difficulties inhibiting intrusive thoughts and compulsive rituals. Neural mechanisms underlying these disturbances are unclear; however, striatal dopamine is implicated in regulation of sensorimotor gating and OCD pathophysiology. The goal of this study was to examine the relationships between sensorimotor gating, compulsive behavior, and striatal dopamine receptor levels in Sapap3 knockout mice (KOs), a widely used preclinical model system for OCD research. We found a trend for disruption of sensorimotor gating in Sapap3-KOs using the translational measure prepulse inhibition (PPI); however, there was significant heterogeneity in both PPI and compulsive grooming in KOs. Disruption of PPI was significantly correlated with a more severe compulsive phenotype. In addition, PPI disruption and compulsive grooming severity were associated with reduced dopamine D1 and D2/3 receptor density in the nucleus accumbens core (NAcC). Compulsive grooming progressively worsened in Sapap3-KOs tested longitudinally, but PPI disruption was first detected in high-grooming KOs at 7 months of age. Through detailed characterization of individual differences in OCD-relevant behavioral and neurochemical measures, our findings suggest that NAcC dopamine receptor changes may be involved in disruption of sensorimotor gating and compulsive behavior relevant to OCD.


Assuntos
Comportamento Compulsivo/fisiopatologia , Proteínas do Tecido Nervoso/genética , Transtorno Obsessivo-Compulsivo/fisiopatologia , Inibição Pré-Pulso/fisiologia , Receptores Dopaminérgicos/fisiologia , Animais , Dopamina/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Núcleo Accumbens/fisiopatologia , Transtorno Obsessivo-Compulsivo/genética , Receptores Dopaminérgicos/genética , Filtro Sensorial/fisiologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-33961964

RESUMO

OBJECTIVE: To characterize the functional connectivity (FC) of target brain regions for deep brain stimulation (DBS) in patients with treatment-resistant depression (TRD), and to evaluate its gender and brain lateralization dependence. METHODS: Thirty-one TRD patients and twenty-nine healthy control (HC) subjects participated. FC of subcallosal cingulate gyrus (SCG), ventral caudate (VCa), nucleus accumbens (NAc), lateral habenula (LHb), and inferior thalamic peduncle (ITP) were evaluated using resting-state fMRI. FC was characterized by calculating the nodal 'degree', a major feature of the graph theory. RESULTS: The degree measures of the left and right VCa, the left LHb, and the left ITP were significantly greater in the TRD than in the HC group. The degree was greater in females with TRD in all these regions except the right LHb. Finally, the left hemisphere was generally more affected by depression and presented significant degrees in LHb and ITP regions of the patients. CONCLUSION: Our findings demonstrate the ability of degree to characterize brain FC and identify the regions with abnormal activities in TRD patients. This implies that the degree may have the potential to be used as an important graph-theoretical feature to further investigate the mechanisms underlying TRD, and consequently along with other diagnostic markers, to assist in the determination of the appropriate target region for DBS treatment in TRD patients.


Assuntos
Encéfalo , Estimulação Encefálica Profunda , Transtorno Depressivo Resistente a Tratamento , Lateralidade Funcional , Imageamento por Ressonância Magnética , Adulto , Encéfalo/fisiopatologia , Encéfalo/cirurgia , Transtorno Depressivo Resistente a Tratamento/fisiopatologia , Transtorno Depressivo Resistente a Tratamento/cirurgia , Feminino , Giro do Cíngulo/fisiopatologia , Habenula/fisiopatologia , Humanos , Masculino , Núcleo Accumbens/fisiopatologia , Fatores Sexuais , Tálamo/fisiopatologia
20.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917517

RESUMO

Alcohol use disorder remains a substantial social, health, and economic problem and problem drinking levels in women have been increasing in recent years. Understanding whether and how the underlying mechanisms that drive drinking vary by sex is critical and could provide novel, more targeted therapeutic treatments. Here, we examine recent results from our laboratories and others which we believe provide useful insights into similarities and differences in alcohol drinking patterns across the sexes. Findings for binge intake and aversion-resistant, compulsion-like alcohol drinking are considered, since both are likely significant contributors to alcohol problems in humans. We also describe studies regarding mechanisms that may underlie sex differences in maladaptive alcohol drinking, with some focus on the importance of nucleus accumbens (NAcb) core and shell regions, several receptor types (dopamine, orexin, AMPA-type glutamate), and possible contributions of sex hormones. Finally, we discuss how stressors such as early life stress and anxiety-like states may interact with sex differences to contribute to alcohol drinking. Together, these findings underscore the importance and critical relevance of studying female and male mechanisms for alcohol and co-morbid conditions to gain a true and clinically useful understanding of addiction and neuropsychiatric mechanisms and treatment.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Núcleo Accumbens/metabolismo , Caracteres Sexuais , Consumo Excessivo de Bebidas Alcoólicas/patologia , Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Consumo Excessivo de Bebidas Alcoólicas/terapia , Feminino , Humanos , Masculino , Núcleo Accumbens/patologia , Núcleo Accumbens/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...